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Abstract

Real-data experiments with an ensemble data assimilation system using the NCEP Global

Forecast System model were performed and compared with NCEP Global Data Assimilation

System operational in March 2004. All observations for January and February 2004 in the op-

erational data stream were assimilated except satellite radiances. The ensemble data assimila-

tion system outperformed the NCEP operational 3D-Var system, with the biggest improvement

in data sparse regions. Ensemble data assimilation analyses yielded a 24-hour improvement

in forecast skill in the Southern Hemisphere extratropics relative to the NCEP 3D-Var sys-

tem (the 48-hour forecast from the ensemble data assimilation system was as accurate as the

24-hour forecast from the 3D-Var system). Improvements in the data-rich Northern Hemi-

sphere, while still statistically significant, were more modest. It remains to be seen whether

the improvements seen in the Southern Hemisphere will be retained when satellite radiances

are assimilated. Three different parameterizations of background errors unaccounted for in the

data assimilation system (including model error) were tested and found to perform similarly.
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1. Introduction

Ensemble-based data assimilation (EDA) methods are emerging as alternatives to four-dimensional

variational (4D-Var) methods (e.g. Thépaut and P. Courtier 1991; Courtier et al. 1994; Rabier et al.

2000) for operational atmospheric data assimilation systems. All EDA algorithms are inspired by

the Kalman Filter (KF), though in EDA the background-error covariances are estimated from an

ensemble of short-term model forecasts instead of propagating the background-error covariance

matrix explicitly with a linear model. Since the KF provides the optimal solution to the data as-

similation problem when the error dynamics are linear, and the error covariances are Gaussian and

perfectly known, EDA methods also are optimal under the same conditions, as long as the ensem-

ble size is large enough. EDA systems have developed along two primary lines, ’stochastic filters’

which use random number realizations to simulate observation error (e.g. Burgers et al. 1998;

Houtekamer and Mitchell 1998), and ’deterministic filters’ (e.g. Tippett et al. 2003; Whitaker and

Hamill 2002; Anderson 2001; Bishop et al. 2001; Ott et al. 2004) which do not. Comprehensive

overviews of ensemble data assimilation techniques can be found in Evensen (2003) and Hamill

(2006). EDA methods are potentially attractive alternatives to 4D-Var mainly for three reasons.

First, they are very simple to code and maintain, for there is no variational minimization involved,

and no adjoint of the forecast model is necessary1. Secondly, they automatically provide an en-

semble of states to initialize ensemble forecasts, eliminating the need to run additional algorithms

to generate perturbed initial conditions. Thirdly, it is relatively straightforward to treat the effects

of model error. In simple models, EDA methods have been shown to perform similarly to 4D-

1The adjoint of the forecast model is not strictly necessary for 4D-Var, but is used to iteratively minimize the cost
function in all current operational implementations.
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Var, as long as the assimilation window in 4D-Var is long enough, and better than 4D-Var if the

assimilation window is too short (Kalnay et al. 2006).

Although most studies to date have tested EDA systems either in idealized models or under per-

fect model assumptions, there has been progress recently toward implementing prototype opera-

tional EDA systems, using real weather prediction models and observations. Whitaker et al. (2004)

and Compo et al. (2006) showed that EDA are well-suited to the problem of historical reanalysis,

since the flow-dependent background error estimates they provide are especially important when

observations are sparse (Hamill and Snyder 2000). Houtekamer et al. (2005) have implemented the

EnKF at the Meteorological Service of Canada (MSC), and their initial implementation was shown

to perform similarly to the current operational system (based on three-dimensional variational as-

similation, or 3D-Var). In this study we have compared the performance of our EDA system with

that of the 3D-Var system operational at the U.S. National Weather Service National Centers for

Environmental Prediction (NCEP) during January and February 2004. Because of computer limi-

tations, we were not able to run our EDA system at the resolution used in NCEP operations at that

time (triangular truncation at wavenumber 254 and 64 levels), so we have run our EDA system

at roughly one-quarter the operational resolution (triangular truncation at wavenumber 62 and 28

levels). Similarly, assimilating all of the satellite radiance observations was beyond our means, so

only the non-radiance observations were assimilated. NCEP has produced a corresponding run of

the operational Global Data Assimilation System (GDAS, Parrish and Derber (1992),Derber and

Wu (1998), NCEP Environmental Modellng Center (2004)) at the same reduced resolution, with

the same subset of observations for the period of interest (January and February 2004) to use as a
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benchmark for the EDA system.

The ensemble data assimilation system and experimental design are described in section 2.

The results of the EDA assimilation experiments are presented in section 3 and compared with the

benchmark run of the NCEP GDAS. Particular attention is paid to the sensitivity of the results to

the method for parameterizing model error. In section 4, our EDA algorithm is compared with

a different implementation developed at the University of Maryland called the Local Ensemble

Transform Kalman Filter (Hunt et al. 2006). The results are summarized in the final section and

their implications for further development of ensemble data assimilation are discussed.

2. Experimental Design

a. Observations

All of the observations used in the NCEP GDAS during January and February 2004, except

the satellite radiances, are input into the ensemble data assimilation system (including satellite-

derived wind vectors). The decision not to include satellite radiances in our initial tests of the EDA

was made partially to lessen the computational expense, and thereby permit a larger number of

experiments to be run. Since the effective assimilation of satellite radiances depends crucially on

issues related to bias correction, quality control, and radiative transfer, we also felt that withholding

radiance observations would simplify a comparison of the methods used to calculate the analysis

increment. However, the background-error covariances for the NCEP GDAS system were tuned

for a observation network that includes satellite radiances. Therefore, it is possible that NCEP
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GDAS benchmark used here may not be the best that a 3D-Var system could do for the observation

network used in this comparison.

The calculation of the forward (H) operator was performed by running the NCEP GDAS sys-

tem once for each ensemble member, saving the values of Hxb (where xb is the background, or

first-guess model forecast) to a file, and exiting the code before the computation of the analysis

increment. The observation-error covariances (R) were set to the same nominal values used by

NCEP.

b. The forecast model and benchmark.

The forecast model used is the forecast model component NCEP global forecast system (GFS).

We have used a version that was operational in March 2004. The GDAS that was operational at

the time (Global Climate and Weather Modelling Branch, Environmental Modelling Center 2003)

uses a first-guess forecast run at a triangular truncation at wavenumber 254, with 64 sigma levels

(T254L64). Computational constraints required us to use a lower resolution for ensemble data

assimilation system, triangular truncation at wavenumber 62 with 28 vertical levels (T62L28). A

digital filter finalization (Lynch and Huang 1992) with a span of six hours centered on the 3-hour

forecast is performed during the 6-hour first-guess forecast, as in the operational GDAS. The dig-

ital filter diminishes gravity wave oscillations by temporally filtering the model variables. The

performance of the ensemble data assimilation system is evaluated relative to a special run of the

NCEP GDAS operational in March 2004, performed at NCEP, using the same reduced resolution

forecast model (T62L28) and the same reduced set of non-radiance observations. We call the anal-
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yses generated from this special reduced resolution run of the GDAS ’NCEP-Benchmark’, while

the operational GDAS analyses are referred to as “NCEP-Operational”. The NCEP-Operational

analyses were run at four times higher resolution (T254L64) and included satellite radiances in

the assimilation. The quality of the analyses produced by the EDA system are assessed by per-

forming single deterministic forecasts initialized from the ensemble-mean EDA analyses and the

NCEP-Benchmark analyses, with the same T62L28 version of the NCEP GFS. These forecasts are

verified against observations, and the NCEP-Operational analyses.

c. Computing the analysis increment

Ensemble data assimilation systems are designed to update a forecast ensemble to produce

analysis ensemble with an improved mean and perturbations that sample the analysis-error co-

variance. Following the notation of Ide et al. (1997), let xb be an m-dimensional background

model forecast; let yo be a p-dimensional set of observations; let H be the operator that converts

the model state to the observation space; let Pb be the m×m-dimensional background-error co-

variance matrix; and let R be the p× p-dimensional observation-error covariance matrix. The

minimum error-variance estimate of the analyzed state xa is then given by the traditional Kalman

filter update equation (Lorenc 1986),

xa= xb+K(yo−Hxb), (1)
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where

K = PbHT (HPbHT +R)−1. (2)

In ensemble data assimilation, PbHT is approximated using the sample covariance estimated

from an ensemble of model forecasts. For the rest of the paper, the symbol Pb is used to denote

the sample covariance from an ensemble, and K is understood to be computed using sample co-

variances. Expressing the model state vector as an ensemble mean (denoted by an over-bar) and a

deviation from the mean (denoted by a prime), the update equations for the Ensemble Square-Root

Filter (EnSRF, Whitaker and Hamill 2002) may be written as

xa=xb+K(yo-Hxb), (3)

x
′a = x

′b− K̃Hx
′b, (4)

where PbHT =x′b(Hx′b)T ≡ 1
n−1 ∑n

i=1 x′bi (Hx
′b
i )T , n is the ensemble size (= 100 unless otherwise

noted), K is the Kalman gain given by (2) and K̃ is the gain used to update deviations from the

ensemble mean. Note that an over-bar used in a covariance estimate implies a factor of n−1 instead

of n in the denominator, so that the estimate is unbiased. If R is diagonal, observations may be

assimilated serially, one at a time, so that the analysis after assimilation of the Nth observation

becomes the background estimate for assimilating the (N + 1)th observation (Gelb et al. 1974).

With this simplification, K̃ may be written as
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K̃=
(

1+
√

R
HPbHT +R

)−1

K, (5)

for an individual observation, where R and HPbHT are scalars, while K and K̃ are vectors of the

same dimension as the model state vector (Whitaker and Hamill 2002).

Distance-dependent covariance localization (Houtekamer and Mitchell 2001; Hamill et al.

2001) is employed to account for sampling error in the estimation of the background-error co-

variances. Background-error covariances are forced to taper smoothly to zero 2800 km away from

the observation in the horizontal, and two scale heights (−ln(σ),where σ = p
ps

) in the vertical.

These values are the same as used in the MSC Ensemble Kalman Filter (Houtekamer and Mitchell

2005) operational in 2005. The Blackman window function (Oppenheim and Schafer 1989)

A(r) = 0.42+0.5cos πr
L +0.08cos 2πr

L r ≤ L

A(r) = 0 r > L
(6)

(where r is the horizontal or vertical distance from the observation, and L is the distance at which

the covariances are forced to be zero), commonly used in power spectrum estimation, is used to

taper the covariances in both the horizontal and vertical. We chose this function instead of the

more popular Gaspari-Cohn 5th order polynomial (Gaspari and Cohn 1999) since it was faster to

evaluate on our computing platform.

The serial processing algorithm employed here is somewhat different than that described in

Whitaker et al. (2004). Here we follow an approach similar to that used in the Local Ensemble

Transform Kalman Filter (LETKF, Hunt et al. (2006)). In the LETKF, each element of the state
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vector is updated independently, using all of the observations in a local region surrounding that

element. All of the observations in the local region are used simultaneously to update the state

vector element using the Kalman Filter update equations expressed in the subspace of the ensem-

ble. Here we loop over all of the observations that affect each state vector element, and update that

state vector element for each observation using (3) and (4). The forward interpolation operation

(the computation of the observation priors, or Hxb) is precomputed, using the background forecast

at several times levels in order to include time interpolation. During the state update (which con-

sists of a loop over all the elements of the state vector), both the current state vector element and

all the observation priors which affect that state vector element are updated. The process can be

summarized as follows:

1. Integrate the forecast model forward ta + 0.5ta from the previous analysis time for each

ensemble member (where ta = 6 hours is the interval at which observations are assimilated),

Save hourly output for each ensemble member from time t = ta−0.5ta to ta +0.5ta.

2. Compute the observation priors for all observations and ensemble members (i.e. compute

Hxb). Since the observations occur over the time window ta−0.5ta to ta +0.5ta, this involves

linear interpolation in time using the hourly model output.

3. Update each element of the model state vector at time t = ta. For each element of the state

vector, find all the observations and their associated priors that are ’close’ to that element

(where the definition of ’close’ is determined by the covariance localization length scales

in the horizontal and vertical). Estimate how much each observation would reduce the en-

semble variance for that state element if it were assimilated in isolation, using (4). Sort the
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observations according to this estimate, so the observations with the largest expected vari-

ance reduction are treated first. Loop over the observation in this order and compute the

ratio of the posterior to prior ensemble variance (F) for the current state vector element. If

F ≥ 0.99, skip to the next observation. If F < 0.99, update the current state vector element

for this observation using (3) and (4). Also update all the ’close’ observation priors for this

observation (except those for observations which have already been used to update this state

element, or those for observations which have been skipped because F exceeded 0.99, since

those observation priors are no longer needed to update the current state vector element).

Proceed to the next element of the state vector and repeat. This step can be performed for

each state vector element independently in a multi-processor computing environment, as

long as each processor has access to all the observation priors that can affect the state vector

element being updated on that processor. Since the update of the observation priors is done

independently on each processor, no communication between processors is necessary.

4. After all elements of the state vector have been updated, adjust the ensemble perturbations

to account to unrepresented sources of error (see section 2d). Go to step (1) and repeat for

the next analysis time.

Step (3) includes an adaptive observation thinning algorithm designed to skip observations whose

information content is deemed to be negligible. If the ratio F (describing the variance of the up-

dated ensemble to the prior ensemble) is close to 1.0, the observation will have little impact on the

ensemble variance for that state vector element. This is likely to be true if a previously assimilated

observation has already significantly reduced the ensemble variance for that state element. This ap-
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proach not only dramatically reduces the computational cost of the state update when observations

are very dense, but it also partially mitigates the effect of unaccounted-for correlated observation

errors. When observations are much denser than the grid spacing of the forecast model, they are

likely resolving scales not represented by the forecast model. Typically, these ’errors of representa-

tiveness’ are accounted for by increasing the value of R. However, ’representativeness errors’ also

have horizontal correlations, which are usually not accounted for. Liu and Rabier (2002) showed

that assimilating dense observations with correlated errors with a suboptimal scheme that ignores

those error correlations can actually degrade the analysis (compared to an analysis in which the

observations are thinned so that the separation between observations is greater than the distance

at which their errors are correlated). The adaptive thinning strategy employed here has the ef-

fect of sub-sampling the observations so that the mean areal separation between observations used

to update a given state vector element is increased. The critical value of F used in the thinning

(set to 0.99 in this study) can be used to control this separation, with smaller values of F result

in larger separation distances. Adaptive thinning may actually improve the analysis in situations

where there are significant unaccounted-for error correlations between nearby observations. If cor-

relations between nearby observations are properly accounted for in R, there should be no benefit

to this type of adaptive thinning, other than to reduce the computational cost of computing the

analysis increment.

The main advantage of this approach over the serial processing algorithm used in Whitaker

et al. (2004) is that it is more easily parallelized on massively parallel computers. Step (3), the

update for each element of the state vector, can be performed independently for each element of
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the state vector. Therefore, the state vector can be partitioned arbitrarily, and each partition can

be updated on a separate processor. No communication between processors is necessary during

the state update. However, there is a significant amount of redundant computation associated with

the update of the observation priors in step (3). This is because nearby state vector elements are

influenced by overlapping sets of observations, so that different processors must update nearly

identical sets of observation priors.

Since the observation network is very inhomogeneous, some elements of the state vector can be

influenced by much larger number of observations than other elements. For example, state vector

elements in the mesosphere or near the South Pole will be influenced by very few observations,

while those in the lower troposphere over Europe or North America will be influenced by a much

larger number of observations. To alleviate load imbalances which may occur if some processors

are updating state vector elements which are ’observation rich’, while others are updating state

vector elements that are ’observation poor’, the elements of the model state vector are randomly

shuffled before being assigned to individual processors.

The algorithm used here has a couple of potential advantages over the LETKF. The serial pro-

cessing algorithm allows for adaptive thinning of observations, in a way that is not easily achiev-

able in the LETKF framework where all the observations are assimilated simultaneously. This may

prove to be a benefit when observation errors are significantly correlated, but assumed to be un-

correlated. However, if observation error correlations are accounted for in R, the LETKF may be

preferable, since serial processing becomes significant more complicated when R is not diagonal

(the ensemble must be transformed into a space in which R is diagonal (Kaminski et al. 1971)).
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Since the LETKF is performed in the subspace of the ensemble, covariance localization as it is

traditionally applied, is problematic. Hunt et al. (2006) have suggested that effect of covariance

localization may be mimicked in the LETKF by increasing the value of R as a function of the

distance from the state vector element being updated. This “observation-error localization” allows

the influence of observations to decay smoothly to zero at a specified distance from an analysis

grid point without increasing the effective number of degrees of freedom in the ensemble (as is the

case when covariance localization is applied to Pb). Our code allows the LETKF algorithm or the

serial processing algorithm to be activated by a run-time switch. In section 3d, we will compare

assimilation results using the LETKF with observation-error localization (using all available ob-

servations), to those obtained using the serial algorithm with “traditional” covariance localization

(and adaptive observation thinning).

d. Accounting for system errors

As discussed in Houtekamer and Mitchell (2005), ensemble data assimilation systems are sub-

optimal because of (i) sampling error in the estimation of background-error covariances, (ii) errors

in the specification of the observation error statistics, (iii) errors in the forward interpolation oper-

ator, (iv) possible non-Gaussianity of forecast and observation errors, and (v) errors in the forecast

model that have not been accounted for. The effects of all of these are mixed together as the as-

similation system is cycled, so a quantitative assessment of their relative impacts is difficult. Their

net effect on an ensemble data assimilation system is to introduce a bias in the error covariances,

such that they are too small and span a different eigenspace than the forecast errors. As a result,
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various ad-hoc measures must be taken to avoid filter divergence. For example;

• Distance-dependent covariance localization (Houtekamer and Mitchell 2001; Hamill et al.

2001) is usually employed to combat (i), and is used here.

• Adaptive thinning of observations as previously described, or the construction of ’super-

observations’ (Daley 1991) are examples of methods used to combat (ii).

• The effects of (iii) are often accounted for indirectly by increasing the value of the observa-

tion error to account for the “error of representativeness”. However, this approach does not

fully account for the spatially correlated part of the error in the forward operator.

• The Kalman filter is a special case of Bayesian state estimation which assumes normal error

distributions, so the effects of (iv) can only be dealt with relaxing that assumption, which

implies a re-definition of the update equations (1)- (5).

Item (v), model error, is the most difficult to deal with. In fact, as pointed out by Houtekamer and

Mitchell (2005), this category is often used as a catch-all for the effects of all mis-represented error

sources which are accumulated as the data assimilation system is cycled, and may more properly be

termed “system error”. We have tested three relatively simple methods for accounting for system

error in our data assimilation system. These are (i) covariance, or multiplicative inflation (?), (ii)

additive inflation (Houtekamer and Mitchell 2005), and (iii) relaxation-to-prior (Zhang et al. 2004).

These methods are meant to account for biases in the second moment of the ensemble, and not the

mean. Systematic model errors can cause the ensemble mean to be biased. Schemes to correct for

systematic model errors in EDA have been proposed (Baek et al. 2006; Keppenne et al. 2005), but
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in the experiments shown here we have not accounted for biases in the ensemble mean first guess.

Each of the three methods used here are applied to the posterior ensemble, after the computation

of the analysis increment and before running the forecasts to be used as the first-guess for the next

state update. This is done to more easily accommodate time interpolation in the forward operator.

Since time interpolation requires use of the first-guess ensemble at several forecast times, if the

system error parameterization were applied to the prior ensemble instead of the posterior ensemble,

the parameterization would have to be applied at each forecast time used in the time interpolation.

Applying these parameterizations to the posterior ensemble is justified by our re-interpretation

of the model error as a system error reflecting an accumulation of errors arising from several

components of the data assimilation system, not just the forecast model (Houtekamer and Mitchell

2005).

The first method for treating system error, known as covariance, or multiplicative inflation

(Anderson and Anderson 1999) simply inflates the deviations from the ensemble mean by a factor

r > 1.0 for each member of the ensemble. We have found that different inflation factors were

required in the Northern and Southern Hemispheres and in the troposphere and stratosphere, due

to the large differences in the density of the observing networks. In the limit that there are no

observations influencing the analysis in a given region, it is easy to envision how inflating the

ensemble every analysis time can lead to unrealistically large ensemble variances, perhaps even

exceeding the climatological variance (Hamill and Whitaker 2005). Here we use an inflation factor

of r = 1.30 in the Northern Hemisphere (poleward of 25oN) at σ = 1, r = 1.18 in the Southern

Hemisphere (poleward of 25oS) at σ = 1 and value of r = 1.24 in the tropics (between of 15oS

15



and 15oN) at σ = 1. The values vary linearly in latitude in the transition zone between the tropics

and extra-tropics. In the vertical, the values of r taper smoothly from their maximum values at the

surface to 1.0 at six scale heights (−ln(σ) = 6). The Blackman function, (6), is used to taper the

inflation factor in the vertical.

The second method for treating system error is additive inflation. In the standard Kalman fil-

ter formulation, model error is parameterized by adding random noise with a specified covariance

structure in space, and zero correlation in time, to the background-error covariances after those

covariances are propagated from the previous analysis time using a linear model. Applying this

approach to an ensemble filter involves adding random perturbations, sampled from a distribution

with known covariance statistics, to each ensemble member. This technique, which is currently

used by the MSC in their operational ensemble data assimilation system, we call additive infla-

tion. MSC uses random samples from their operational 3D-Var static covariance model. Here

we have chosen to use scaled random differences between adjacent 6-hourly analyses from the

NCEP-NCAR Reanalysis (Kistler et al. 2001). The reason for this choice is that 6-h tendencies

will emphasize baroclinically growing, synoptic-scale structures in middle latitudes, while 3D-Var

covariance structures tend to be larger scale and barotropic. Analysis systems which only use in-

formation about observations prior to the analysis time tend to concentrate error in the subspace

of growing disturbances (e.g. Pires and Talagrand 1996), so our use of 6-h tendencies is based on

the assumption that the accumulated effect of unrepresented errors in the data assimilation system

will be concentrated in dynamically active, growing structures. This choice of additive inflation

was shown to work well in a study of the effect of model error on an ensemble data assimilation
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in an idealized general circulation model (Hamill and Whitaker 2005). The random samples are

selected from the subset of 6-hourly reanalyses for the period 1971-2000 that are within 15 days of

the calendar date of the analysis time. The differences between these randomly selected, adjacent

analysis times are scaled by 0.33 before being added to each member of the posterior, or analysis

ensemble.

The third method for treating system error, relaxation-to-prior, was proposed by Zhang et al.

(2004) as an alternative to covariance inflation. The name refers to that fact that it relaxes the

analysis perturbations back toward the prior perturbations independently at each analysis point via

x
′a← (1−α)x

′a +αx
′b. (7)

The adjustment is performed after the state update, and the modified analysis perturbations are then

integrated forward to form the background ensemble for the next analysis time. The advantage of

this approach relative to covariance inflation is that the ensemble perturbations are only modified

where observations exist, thereby avoiding the tendency for ensemble variance to increase without

bound where observations have no influence. Zhang et al. (2004) used a value of 0.5 for their

convective-scale ensemble data assimilation experiment. Here we found that a much larger value,

0.88, was necessary to prevent ensemble variance becoming too small during the two-month as-

similation window. A value of 0.88 means that the weight given to the prior ensemble perturbations

is 88%, and only 12% weight is given to the analysis perturbations computed from the state update

(4).

17



3. Results

Three experiments were performed with the EDA. All of the experiments used the param-

eter settings given in the previous section for covariance localization and adaptive observation

thinning. Only the parameterization of system error was changed. The “EDA-multinf” experi-

ment used multiplicative covariance inflation, the “EDA-addinf” used additive inflation (derived

from random samples of six-hour differences from the NCEP/NCAR reanalysis), and the “EDA-

relaxprior” experiment used the relaxation-to-prior method to increase the variance in the posterior

ensemble. The parameter settings used for these three experiments are as given in the previous

section. Assimilations were performed for the period 00 UTC 1 January 2004 (2004010100) to

00 UTC 10 February, 2004 (2004021000). Forecasts initialized from the ensemble mean analyses

for each of these experiments are compared with forecasts initialized from the NCEP-Benchmark

analyses. The forecasts were run at T62L28 resolution (the same resolution used in the data assim-

ilation cycle), and are verified against observations and the NCEP-Operational 500 hPa analyses.

The initial ensemble for the EDA assimilation runs consisted of a random sample of 100 opera-

tional GDAS analyses from February 2004. The NCEP-Benchmark assimilation run was started

from the operational GDAS analysis on 2004010100. After an initial spinup period of one week,

verification statistics were computed for forecasts initialized every 12 hours from 2004010800 to

2004020800.
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a. Verification using observations.

Three different subsets of observations were used for forecast verifications: marine surface

pressure observations, upper-tropospheric (300-150 hPa) aircraft wind observations, and radiosonde

profiles of wind and temperature. Figure 1 shows the spatial distribution of these observation types

for a typical day. Radiosonde observations mainly sample the continental regions of the Northern

Hemisphere. Marine surface pressure observations sample the ocean regions of both hemispheres,

but are densest in the North Atlantic. Aircraft observations are mainly confined to the western half

of the Northern Hemisphere, but sample both the continents of North America and Europe and the

Pacific and Atlantic ocean basins.

Table 1 shows the root-mean-square (RMS) fit of 48-h forecasts to marine surface pressure

and upper-tropospheric aircraft meridional wind observations. The EDA-based forecasts fit the

observations significantly better than the NCEP-Benchmark forecasts. The significance level from

a paired sample t-test (Wilks 2006, p. 452) for the difference between the mean EDA forecast

fits and the mean NCEP-Benchmark forecast fits is also given in Table 1 for each of the EDA

experiments. The EDA-addinf forecasts appear to fit the observations better than the EDA-multinf

and EDA-relaxprior forecasts, especially for marine surface pressure, although the differences

between the EDA experiments are not significant at the 99% confidence level.

Figure 2 shows the RMS fit of 6 and 48-h forecasts to radiosonde profiles of meridional wind

and temperature for each of the experiments. Again, all of the EDA-based forecasts fit the ra-

diosonde observations better than the NCEP-Benchmark forecasts. Aggregating all of the obser-

vations between 850 and 70 hPa, the difference between EDA-addinf and EDA-multinf and the
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NCEP-Benchmark forecasts is significant at the 99% level. The EDA-relaxprior forecasts are not

significantly closer to the radiosonde observations than the NCEP-Benchmark forecasts. The EDA-

addinf forecasts generally have the lowest error, although the differences between the EDA-addinf

and EDA-multinf forecasts is not statistically significant at the 99% level.

Table 2 shows the RMS fit of 48-h forecasts to marine surface pressure observations for the

Northern Hemisphere and the Southern Hemisphere separately. We have only stratified the re-

sults by hemisphere for marine surface pressure because the other observation types are primarily

concentrated in the Northern Hemisphere (1). The difference between the fit of EDA forecasts

and NCEP-Benchmark forecasts to marine surface pressure observations is larger in the South-

ern Hemisphere extratropics than in the Northern Hemisphere extratropics (Table 2). This result

agrees with previous studies using EDA systems in a perfect-model context (Hamill and Snyder

2000) and using real observations characteristic of observing networks of the early 20th century

(Whitaker et al. 2004) which have shown that the flow-dependent background-error covariances

these systems provide have the largest impact when the observing network is sparse.

b. Verifications using analyses

When comparing forecasts and analyses from different centers, the standard practice in the

operational weather prediction community has been to verify each forecast against its own analysis,

that is, the analysis generated by the same center. The problem with this approach is that an analysis

can perform well in this metric if the assimilation completely ignores the observations. Here we

have the luxury of having an independent, higher quality analysis to verify against, the NCEP-
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Operational analysis. Since this analysis was run at four times higher resolution and used a large

set of observations (including the satellite radiances), we expect it to be significantly better. We

have verified that this is indeed the case, especially in the Southern Hemisphere where satellite

radiances have been found to have the largest impact on analysis quality (Derber and Wu 1998).

Figure 3 shows vertical profiles of 48-hour geopotential height and meridional wind forecast

errors for both the Northern Hemisphere and Southern Hemisphere for forecasts initialized from

analyses produced by each of the EDA experiments and the NCEP-Benchmark experiment. For

the most part, forecasts from each of the EDA experiments track the NCEP-Operational analysis

at 48 hours better than the NCEP-Benchmark forecasts. The lone exception is the EDA-relaxprior

forecasts of meridional wind in the Northern Hemisphere. All the other EDA forecasts are more

skillful than the NCEP-Benchmark forecasts, and these differences are significant at the 99% level

at 500 hPa, using a paired-sample t-test as that accounts for serial correlations. The EDA-addinf

performs better overall than the EDA-multinf and EDA-relaxprior experiments, although the dif-

ferences are only statistically significant at the 99% level in the Northern Hemisphere. However,

due to computer resource limitations, we have not exhaustively tuned the parameter settings for

each of these experiments, and so cannot state with confidence that differences between the EDA

experiments shown in Fig. 3 would withstand a more rigorous tuning.

The improvement seen in the EDA experiments relative to the NCEP-Benchmark is especially

dramatic in the Southern Hemisphere, where it is equivalent to 24-hours of lead time (in other

words, 48-hour forecasts initialized from the EDA analyses are about as accurate as 24-hour fore-

casts initialized from the NCEP-Benchmark 3D-Var analysis). This is further evidence that flow-
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dependent covariances are most important in data sparse regions. This is illustrated for a specific

case in Fig. 4, which shows the 500 hPa analyses produced by the NCEP-Benchmark, NCEP-

Operational and EDA-addinf analysis systems. The difference between the NCEP-Benchmark and

EDA-addinf analyses is especially large (nearly 200 m) in the trough off the coast of Antarctica

near 120oW , where the EDA-addinf is much closer to the NCEP-Operational analysis. This region

corresponds to the most data-sparse region of the Southern Hemisphere, as can be seen from the

distribution of marine surface pressure observations in Fig. 1. The EDA system is clearly able

to extract more information from the sparse Southern Hemisphere observational network than the

NCEP 3D-Var system, and compares favorably with higher-resolution operational analysis which

utilized more than an order of magnitude more observations in this region (by assimilating satellite

radiance measurements).

c. Ensemble Consistency

If the EDA system is performing optimally, the innovation covariances should satisfy

< (yo-Hxb)(yo-Hxb) >= HPbHT +R. (8)

(Houtekamer et al. 2005), where the angle brackets denote the expectation value. Here we com-

pare the diagonal elements of the matrices on the left and right hand sides of (8), computed for

radiosonde observations in the EDA experiments. If the magnitudes of those diagonal elements

are similar, the ensemble is said to be consistent, i.e., the innovation variances are consistent with
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the background and observation error variances at the observation locations. This primarily reflects

whether the degree to which parameterization of system error has been tuned, although with the

small number of parameters used here to represent system error it will be difficult if not impossible

to achieve a perfect match, unless the parameterization of system error itself is very accurate.

Figure 5 shows the square-root of the ensemble spread plus observation error variance (the di-

agonal of the right-hand side of (8)) at radiosonde locations for the three EDA experiments. This

quantity can be regarded as the “predicted” innovation standard deviation, since if (8) is satisfied,

the two quantities will be the same. For the purposes of this discussion we will assume that any dis-

agreement between the left and right hand sides of (8) is due to deficiencies in the background-error

covariance, and not the observation-error covariance. The actual innovation standard-deviation (or

the root-mean-square fit) is shown in Fig. 5 only for the EDA-addinf experiment, since the ra-

diosonde fits for the other EDA experiments are quite similar. For both temperature and meridional

wind, the ensemble spread in the lower-troposphere is deficient for all three EDA experiments, with

EDA-relaxprior having the smallest spread, and the EDA-addinf having the largest. This means

that all of the EDA systems are not making optimal use of the radiosondes in the lower troposphere.

In particular they are weighting the first guess too much.

Houtekamer et al. (2005) showed diagnostics similar to these for the MSC implementation of

the Ensemble Kalman Filter (their Fig. 5). The actual innovation standard deviations for their

implementation are quite similar to ours, but the predicted innovation standard deviations appear

to match the actual values more closely, particularly in the lower troposphere. In the MSC imple-

mentation, system error is additive and is derived from random samples of the operational 3D-Var
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background-error covariance. The operational 3D-Var covariance itself has been tuned so that in-

novation statistics for the radiosonde network are consistent with the observation and background

error variance. Therefore, it is perhaps not surprising that the vertical structure of the predicted

innovation standard deviation more closely matches the actual radiosonde innovations. In all three

of our system error parameterizations, there is only one parameter that can be tuned (in the case

of multiplicative inflation, this parameter can be tuned separately in the Northern Hemisphere,

Tropics and Southern Hemisphere). Therefore, the best that can be done is to tune the parame-

terization so the global (or hemispheric) average predicted innovation standard-deviation matches

the actual. The fact that the vertical structure does not match means that all of these system error

parameterizations themselves are deficient, and do not correctly represent the vertical structure of

the actual system error. In particular, the fact that the multiplicative inflation system error param-

eterization cannot match the actual vertical structure of the innovation variance suggests that the

structure of the underlying system error covariance is quite different than the background-error

covariance represented by the dynamical ensemble, since the multiplicative inflation parameteri-

zation can only represent the system error in the subspace of the existing ensemble. One can either

add more tunable parameters to the parameterizations to force the structures to match, or try to

develop new parameterizations that more accurately reflect the structure of the underlying system

error covariance.

Equation (8) is derived by assuming that the background forecast and observation errors are

uncorrelated, and the observations and background forecast are unbiased (i.e. the expected value of

the mean of the innovation yo-Hxb is zero), as are the Kalman filter update equations (1)-(5). Figure
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6 shows the innovation bias with respect to radiosondes for the EDA-addinf and NCEP-Benchmark

experiments (the other EDA experiments (not shown) have similar innovation biases). There are

significant temperature biases in the lower troposphere, most likely due to systematic errors in the

forecast model’s boundary-layer parameterization. The temperature bias in the lower troposphere

is a significant fraction of the root-mean-square fit of the background forecast to the radiosonde

observations (Fig. 2). Meridional wind biases are also evident in the lower troposphere and near

the tropopause, but are much smaller relative to the root-mean-square fit. For the temperature field

at least, the fact that the ensemble spread appears deficient in the lower troposphere can be partially

explained by the bias component of the innovations, which is not accounted for in (8). However,

the mismatch between the predicted and actual meridional wind innovation standard deviation

appears to primarily a result of deficiencies in the parameterization of the system error covariance.

d. Comparison with the LETKF

The Local Ensemble Transform Kalman Filter proposed by Ott et al. (2004) is algorithmically

very similar to the implementation used here, except that each state vector element is updated

using all the observations in the local region simultaneously using the Kalman Filter update equa-

tions expressed in the subspace of the ensemble. The LETKF is considerably faster when large

numbers of observations are assimilated. However, as mentioned previously, it is not straightfor-

ward to adaptively thin the observations in the LETKF. We have performed an experiment with

LETKF with observation error localization, using additive inflation as a parameterization of sys-

tem error (LETKF-addinf). The parameters settings for the experiment are identical to those used
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in the EDA-addinf experiment discussed previously. Figure 7 compares the 48-h geopotential

height forecast errors for forecasts initialized from the EDA-addinf, LETKF-addinf and NCEP-

Benchmark analyses. The LETKF-addinf forecasts are slightly less skillful than the EDA-addinf

forecasts in the Northern Hemisphere, but slightly more skillful in the Southern Hemisphere. The

differences between the LETKF-addinf and EDA-addinf experiments could be due to several fac-

tors. Firstly, the method used for localizing the impact of observations is slightly different, the

LETKF localizes the impact of observations by increasing the observation error with distance away

from the analysis point, while our serial-processing implementation localizes the background-error

covariances directly. Further experimentation is needed to see if these approaches are indeed equiv-

alent in practice. Secondly, no adaptive observation thinning was done in the LETKF experiment.

The adaptive thinning performed in the EDA-addinf experiment may be beneficial if the obser-

vation errors contains significant horizontal correlations on a scale resolved by the observation

network, which are not accounted for in R. Finally, we may not have tuned the parameters to get

the best performance from either the LETKF or the serial filter, and it is likely that the optimal

parameters are not the same. The differences between the the LETKF-addinf and EDA-addinf ex-

periments, though statistically significant, are so small that we believe differences in tuning, rather

than fundamental differences in the algorithms, are more likely the primary factor.

4. Summary and Discussion

We have shown that ensemble data assimilation outperforms the NCEP operational 3D-Var

system, when satellite radiances are withheld and the forecast model is run at reduced resolution
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(compared to NCEP operations). As expected from previous studies, the biggest improvement is

in data sparse regions. Since no satellite radiances were assimilated, the Southern Hemisphere is

indeed quite data sparse. The EDA analyses yielded a 24-hour improvement in forecast skill in

the Southern Hemisphere extratropics relative to the NCEP 3D-Var system, so that 48-hour EDA-

based forecasts are as accurate as 24-hour 3D-Var based forecasts. Improvements in the data rich

Northern Hemisphere, while still statistically significant, were more modest (equivalent to a 3-6

hour improvement in forecast skill). It remains to be seen whether the improvements seen in the

Southern Hemisphere will be retained when satellite radiances are assimilated.

Three different parameterizations of system error (which is most likely dominated by model

error) were tested. All three performed similarly, but a parameterization based on additive inflation

using random samples of reanalysis 6-hour differences performed slightly better in our tests. All

the parameterizations tested failed to accurately predict the structure of the forecast innovation

variance, suggesting that further improvements in ensemble data assimilation may be achieved

when methods for better accounting for the covariance structure of system error are developed.

Significant innovation biases were found, primarily for lower tropospheric temperature, suggesting

that bias removal algorithms for EDA (such as those proposed by Baek et al. (2006) and Keppenne

et al. (2005)) could also significantly improve the performance of EDA systems.

We believe that these results warrant accelerated development of ensemble data assimilation

systems for operational weather prediction. The limiting factor in the performance of these systems

is almost certainly the parameterization of system error. Even without further improvements in

the parameterization of model error, ensemble data assimilation systems should become more
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and more accurate relative to 3D-Var systems as forecast models improve and the amplitude of

the model-error part of the background-error covariance decreases. Current generation ensemble

data assimilation systems are computationally competitive with their primary alternative, 4D-Var.

However, they are considerably simpler to code and maintain, since and adjoint of the forecast

model is not needed.
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Figure Captions

Figure 1: Locations of (A) radiosonde observations, (B) aircraft observations (airep

and pirep observations between 300 and 150 hPa), and (C) surface marine (ship

and buoy) pressure observations for 00 UTC and 12 UTC January 10, 2004. 37

Figure 2: Root-mean-square fits of 6 and 48-h forecasts initialized from 00, 06, 12

and 18 UTC EDA ensemble mean and NCEP-Benchmark analyses to radiosonde

observations for 20040108 to 20040208. Three different EDA analyses are shown,

each employing a different method for parameterizing system error (see text for

details). 38

Figure 3: Vertical profiles of 48-hour forecast error (measured relative to the NCEP-

Operational analysis). Values for the Northern Hemisphere (poleward of 20oN)

and the Southern Hemisphere (poleward of 20oS) are shown for geopotential height

and meridional wind, for each of the EDA experiments and the NCEP-Benchmark

experiment. 39

Figure 4: Southern Hemisphere 500 hPa geopotential height analyses for the EDA-

addinf (A), the NCEP-Benchmark (B), and the NCEP-Operational (C) analysis

systems, The difference between the EDA-addinf and NCEP-Benchmark analyses

is shown in (D). The contour interval is 75 m in (A)-(C) and 40 m in (D). The 5200

and 5425 meter contours are emphasized in (A)-(C). Negative contours are blue,

positive contours red in (D), and the zero contour is suppressed. 40
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Figure 5: Square-root of ensemble spread plus observation error variance at radiosonde

locations for 6-h forecasts initialized from 06 UTC and 18 UTC EDA for 20040108

to 20040208. Three different EDA ensembles are shown, each employing a dif-

ferent method for parameterizing system error (see text for details). The root-

mean-square fit of the 6-h EDA-addinf ensemble mean forecast to the radiosonde

observations is also shown (black curve). 41

Figure 6: Mean difference between 6-forecast and radiosonde observations (bias) for

forecasts initialized from 06 UTC and 18 UTC EDA for 20040108 to 20040208.

Three different EDA ensembles are shown, each employing a different method for

parameterizing system error (see text for details). 42

Figure 7: Vertical profiles of 48-hour geopotential height forecast error (measured

relative to the NCEP-Operational analysis). Values for the Northern Hemisphere

(poleward of 20oN) and the Southern Hemisphere (poleward of 20oS) are shown

for the EDA-addinf, LETKF-addinf and the NCEP-Benchmark experiments. 43
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EDA-addinf EDA-multinf EDA-relaxprior NCEP-Benchmark
aircraft meridional wind (m/s) 7.57 (99%) 7.54 (>99%) 7.68 (95%) 7.81
surface marine pressure (hPa) 3.13 (>99%) 3.24 (>99%) 3.21 (>99%) 3.52

Table 1: Fits of 48-h forecasts initialized from 00 , 06, 12 and 18 UTC EDA ensemble mean and
NCEP-Benchmark analyses to aircraft (airep and pirep) observations between 300 and 150 hPa and
surface marine (ship and buoy) pressure observations for 20040108 to 20040208. Three different
EDA analyses are shown, each employing a different method for parameterizing system error (see
text for details). The confidence level (in percent) for the difference between each of the EDA
results and the NCEP-Benchmark result is also given. This confidence level is computed using
a two-tailed t-test for the difference between means of paired samples, taking into account serial
correlations in the data.

EDA-addinf EDA-multinf EDA-relaxprior NCEP-Benchmark
NH extratropics 3.29 (>99%) 3.43 (97%) 3.39 (>99%) 3.56
SH extratropics 3.21 (>99%) 3.24 (>99%) 3.23 (>99%) 3.98

Table 2: As in 1, but for surface marine pressure observations in the Northern Hemisphere and
Southern Hemisphere extratropics (poleward of 20oN and 20oS).
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Figure 1: Locations of (A) radiosonde observations, (B) aircraft observations (airep and pirep ob-
servations between 300 and 150 hPa), and (C) surface marine (ship and buoy) pressure observations
for 00 UTC and 12 UTC January 10, 2004.
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Figure 2: Root-mean-square fits of 6 and 48-h forecasts initialized from 00, 06, 12 and 18 UTC
EDA ensemble mean and NCEP-Benchmark analyses to radiosonde observations for 20040108
to 20040208. Three different EDA analyses are shown, each employing a different method for
parameterizing system error (see text for details).
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Figure 3: Vertical profiles of 48-hour forecast error (measured relative to the NCEP-Operational
analysis). Values for the Northern Hemisphere (poleward of 20oN) and the Southern Hemisphere
(poleward of 20oS) are shown for geopotential height and meridional wind, for each of the EDA
experiments and the NCEP-Benchmark experiment.
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Figure 4: Southern Hemisphere 500 hPa geopotential height analyses for the EDA-addinf (A), the
NCEP-Benchmark (B), and the NCEP-Operational (C) analysis systems, The difference between
the EDA-addinf and NCEP-Benchmark analyses is shown in (D). The contour interval is 75 m in
(A)-(C) and 40 m in (D). The 5200 and 5425 meter contours are emphasized in (A)-(C). Negative
contours are blue, positive contours red in (D), and the zero contour is suppressed.
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Figure 5: Square-root of ensemble spread plus observation error variance at radiosonde locations
for 6-h forecasts initialized from 06 UTC and 18 UTC EDA for 20040108 to 20040208. Three
different EDA ensembles are shown, each employing a different method for parameterizing system
error (see text for details). The root-mean-square fit of the 6-h EDA-addinf ensemble mean forecast
to the radiosonde observations is also shown (black curve).
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Figure 6: Mean difference between 6-forecast and radiosonde observations (bias) for forecasts
initialized from 06 UTC and 18 UTC EDA for 20040108 to 20040208. Three different EDA
ensembles are shown, each employing a different method for parameterizing system error (see text
for details).
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Figure 7: Vertical profiles of 48-hour geopotential height forecast error (measured relative to the
NCEP-Operational analysis). Values for the Northern Hemisphere (poleward of 20oN) and the
Southern Hemisphere (poleward of 20oS) are shown for the EDA-addinf, LETKF-addinf and the
NCEP-Benchmark experiments.
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